Archive

Archive for the ‘ecology’ Category

Recent shifts in the occurrence, cause, and magnitude of animal mass mortality events

January 17, 2015 Comments off

Recent shifts in the occurrence, cause, and magnitude of animal mass mortality events (PDF)
Source: Proceedings of the National Academy of Sciences

Mass mortality events (MMEs) are rapidly occurring catastrophic demographic events that punctuate background mortality levels. Individual MMEs are staggering in their observed magnitude: re- moving more than 90% of a population, resulting in the death of more than a billion individuals, or producing 700 million tons of dead biomass in a single event. Despite extensive documentation of individual MMEs, we have no understanding of the major features characterizing the occurrence and magnitude of MMEs, their causes, or trends through time. Thus, no framework exists for contextualizing MMEs in the wake of ongoing global and regional perturbations to natural systems. Here we present an analysis of 727 published MMEs from across the globe, affecting 2,407 animal populations. We show that the magnitude of MMEs has been intensifying for birds, fishes, and marine invertebrat es; invariant for mammals; and decreasing for reptiles and amphibians. These shifts in magnitude proved robust when we accounted for an increase in the occurrence of MMEs since 1940. However, it remains unclear whether the increase in the occurrence of MMEs represents a true pattern or simply a perceived increase. Regardless, the increase in MMEs appears to be associated with a rise in disease emergence, biotoxicity, and events produced by multiple interacting stressors, yet temporal trends in MME causes varied among taxa and may be associated with increased de- tectability. In addition, MMEs with the largest magnitudes were those that resulted from multiple stressors, starvation, and disease. These results advance our understanding of rare demographic processes and their relationship to global and regional perturba- tions to natural systems.

See: Mass Die-Offs of Birds and Fish on the Rise (AllGov.com)

The ecology of religious beliefs

January 5, 2015 Comments off

The ecology of religious beliefs
Source: Proceedings of the National Academy of Sciences

Although ecological forces are known to shape the expression of sociality across a broad range of biological taxa, their role in shaping human behavior is currently disputed. Both comparative and experimental evidence indicate that beliefs in moralizing high gods promote cooperation among humans, a behavioral attribute known to correlate with environmental harshness in nonhuman animals. Here we combine fine-grained bioclimatic data with the latest statistical tools from ecology and the social sciences to evaluate the potential effects of environmental forces, language history, and culture on the global distribution of belief in moralizing high gods (n = 583 societies). After simultaneously accounting for potential nonindependence among societies because of shared ancestry and cultural diffusion, we find that these beliefs are more prevalent among societies that inhabit poorer environments and are more prone to ecological duress. In addition, we find that these beliefs are more likely in politically complex societies that recognize rights to movable property. Overall, our multimodel inference approach predicts the global distribution of beliefs in moralizing high gods with an accuracy of 91%, and estimates the relative importance of different potential mechanisms by which this spatial pattern may have arisen. The emerging picture is neither one of pure cultural transmission nor of simple ecological determinism, but rather a complex mixture of social, cultural, and environmental influences. Our methods and findings provide a blueprint for how the increasing wealth of ecological, linguistic, and historical data can be leveraged to understand the forces that have shaped the behavior of our own species.

Who Will Come to Your Bird Feeder in 2075?

December 24, 2014 Comments off

Who Will Come to Your Bird Feeder in 2075?
Source: USGS/PLoS ONE

The distribution of birds in the United States today will probably look very different in 60 years as a result of climate, land use and land cover changes.

A new U.S. Geological Survey study predicts where 50 bird species will breed, feed and live in the conterminous U.S. by 2075. While some types of birds, like the Baird’s sparrow, will likely lose a significant amount of their current U.S. range, other ranges could nearly double. Human activity will drive many of these shifts. The study was published today in the journal PLOS ONE.

Effects of Climate Variability and Accelerated Forest Thinning on Watershed-Scale Runoff in Southwestern USA Ponderosa Pine Forests

December 1, 2014 Comments off

Effects of Climate Variability and Accelerated Forest Thinning on Watershed-Scale Runoff in Southwestern USA Ponderosa Pine Forests
Source: PLoS ONE

The recent mortality of up to 20% of forests and woodlands in the southwestern United States, along with declining stream flows and projected future water shortages, heightens the need to understand how management practices can enhance forest resilience and functioning under unprecedented scales of drought and wildfire. To address this challenge, a combination of mechanical thinning and fire treatments are planned for 238,000 hectares (588,000 acres) of ponderosa pine (Pinus ponderosa) forests across central Arizona, USA. Mechanical thinning can increase runoff at fine scales, as well as reduce fire risk and tree water stress during drought, but the effects of this practice have not been studied at scales commensurate with recent forest disturbances or under a highly variable climate. Modifying a historical runoff model, we constructed scenarios to estimate increases in runoff from thinning ponderosa pine at the landscape and watershed scales based on driving variables: pace, extent and intensity of forest treatments and variability in winter precipitation. We found that runoff on thinned forests was about 20% greater than unthinned forests, regardless of whether treatments occurred in a drought or pluvial period. The magnitude of this increase is similar to observed declines in snowpack for the region, suggesting that accelerated thinning may lessen runoff losses due to warming effects. Gains in runoff were temporary (six years after treatment) and modest when compared to mean annual runoff from the study watersheds (0–3%). Nonetheless gains observed during drought periods could play a role in augmenting river flows on a seasonal basis, improving conditions for water-dependent natural resources, as well as benefit water supplies for downstream communities. Results of this study and others suggest that accelerated forest thinning at large scales could improve the water balance and resilience of forests and sustain the ecosystem services they provide.

Urban Computing: Concepts, Methodologies, and Applications

November 10, 2014 Comments off

Urban Computing: Concepts, Methodologies, and Applications
Source: Microsoft Research

Urbanization’s rapid progress has modernized many people’s lives, and also engendered big issues, such as traffic congestion, energy consumption, and pollution. Urban computing aims to tackle these issues by using the data that has been generated in cities, e.g., traffic flow, human mobility and geographical data. Urban computing connects urban sensing, data management, data analytics, and service providing into a recurrent process for an unobtrusive and continuous improvement of people’s lives, city operation systems, and the environment. Urban computing is an interdisciplinary field where computer sciences meet conventional city-related fields, like transportation, civil engineering, environment, economy, ecology, and sociology, in the context of urban spaces. This article first introduces the concept of urban computing, discussing its general framework and key challenges from the perspective of computer sciences. Secondly, we classify the applications of urban computing into seven categories, consisting of urban planning, transportation, the environment, energy, social, economy, and public safety & security, presenting representative scenarios in each category. Thirdly, we summarize the typical technologies that are needed in urban computing into four folds, which are about urban sensing, urban data management, knowledge fusion across heterogeneous data, and urban data visualization. Finally, we outlook the future of urban computing, suggesting a few research topics that are somehow missing in the community.

The Modern Outback: Nature, people and the future of remote Australia

October 23, 2014 Comments off

The Modern Outback: Nature, people and the future of remote Australia
Source: Pew Charitable Trusts

The Outback is the vast heartland of Australia. It includes places of exquisite beauty and wildness. It is an area of extremes, alternately lush and bountiful, harsh and inhospitable. The people and land of the Outback embody much that is most distinctive and characteristic of Australia. Yet while the Outback is quintessentially Australian, it is also a place of international consequence.

The Outback has deeply interconnected threads of people and landscapes. Its natural environments support people, jobs, and economies, as well as some of the world’s most diverse and unusual plants and animals. The Outback’s environmental values merit the attention and concern of the nation and the world. However, some of these values are being lost, diminished, or degraded because of particular threats. Managing these risks more effectively, or removing them entirely, would allow for significant progress in ongoing efforts to maintain the environmental, natural and cultural values of the Australian continent as a whole.

Pollution from drug manufacturing: review and perspectives

October 16, 2014 Comments off

Pollution from drug manufacturing: review and perspectives
Source: Philosophical Transactions of the Royal Society

As long ago as the sixteenth century, Paracelsus recognized that ‘the dose makes the poison’. Indeed, environmental concentrations of pharmaceuticals excreted by humans are limited, most importantly because a defined dose is given to just a fraction of the population. By contrast, recent studies have identified direct emission from drug manufacturing as a source of much higher environmental discharges that, in some cases, greatly exceed toxic threshold concentrations. Because production is concentrated in specific locations, the risks are not linked to usage patterns. Furthermore, as the drugs are not consumed, metabolism in the human body does not reduce concentrations. The environmental risks associated with manufacturing therefore comprise a different, wider set of pharmaceuticals compared with those associated with risks from excretion. Although pollution from manufacturing is less widespread, discharges that promote the development of drug-resistant microorganisms can still have global consequences. Risk management also differs between production and excretion in terms of accountability, incentive creation, legal opportunities, substitution possibilities and costs. Herein, I review studies about industrial emissions of pharmaceuticals and the effects associated with exposure to such effluents. I contrast environmental pollution due to manufacturing with that due to excretion in terms of their risks and management and highlight some recent initiatives.

See also:
+ Detection and drivers of exposure and effects of pharmaceuticals in higher vertebrates
+ Risks of hormonally active pharmaceuticals to amphibians: a growing concern regarding progestagens
+ Putting pharmaceuticals into the wider context of challenges to fish populations in rivers

Follow

Get every new post delivered to your Inbox.

Join 1,000 other followers