Archive for the ‘mBio’ Category

Transmission of Ebola Viruses: What We Know and What We Do Not Know

March 4, 2015 Comments off

Transmission of Ebola Viruses: What We Know and What We Do Not Know
Source: mBio

Available evidence demonstrates that direct patient contact and contact with infectious body fluids are the primary modes for Ebola virus transmission, but this is based on a limited number of studies. Key areas requiring further study include (i) the role of aerosol transmission (either via large droplets or small particles in the vicinity of source patients), (ii) the role of environmental contamination and fomite transmission, (iii) the degree to which minimally or mildly ill persons transmit infection, (iv) how long clinically relevant infectiousness persists, (v) the role that “superspreading events” may play in driving transmission dynamics, (vi) whether strain differences or repeated serial passage in outbreak settings can impact virus transmission, and (vii) what role sylvatic or domestic animals could play in outbreak propagation, particularly during major epidemics such as the 2013–2015 West Africa situation. In this review, we address what we know and what we do not know about Ebola virus transmission. We also hypothesize that Ebola viruses have the potential to be respiratory pathogens with primary respiratory spread.

Categories: ebola, mBio, science

A Shared Population of Epidemic Methicillin-Resistant Staphylococcus aureus 15 Circulates in Humans and Companion Animals

May 22, 2014 Comments off

A Shared Population of Epidemic Methicillin-Resistant Staphylococcus aureus (MRSA) 15 Circulates in Humans and Companion Animals
Source: mBio

Methicillin-resistant Staphylococcus aureus (MRSA) is a global human health problem causing infections in both hospitals and the community. Companion animals, such as cats, dogs, and horses, are also frequently colonized by MRSA and can become infected. We sequenced the genomes of 46 multilocus sequence type (ST) 22 MRSA isolates from cats and dogs in the United Kingdom and compared these to an extensive population framework of human isolates from the same lineage. Phylogenomic analyses showed that all companion animal isolates were interspersed throughout the epidemic MRSA-15 (EMRSA-15) pandemic clade and clustered with human isolates from the United Kingdom, with human isolates basal to those from companion animals, suggesting a human source for isolates infecting companion animals. A number of isolates from the same veterinary hospital clustered together, suggesting that as in human hospitals, EMRSA-15 isolates are readily transmitted in the veterinary hospital setting. Genome-wide association analysis did not identify any host-specific single nucleotide polymorphisms (SNPs) or virulence factors. However, isolates from companion animals were significantly less likely to harbor a plasmid encoding erythromycin resistance. When this plasmid was present in animal-associated isolates, it was more likely to contain mutations mediating resistance to clindamycin. This finding is consistent with the low levels of erythromycin and high levels of clindamycin used in veterinary medicine in the United Kingdom. This study furthers the “one health” view of infectious diseases that the pathogen pool of human and animal populations are intrinsically linked and provides evidence that antibiotic usage in animal medicine is shaping the population of a major human pathogen.

See: Humans and Companion Animals Harbor the Same Types of MRSA Infections (American Society for Microbiology)

Males Are Overrepresented among Life Science Researchers Committing Scientific Misconduct

January 23, 2013 Comments off

Males Are Overrepresented among Life Science Researchers Committing Scientific Misconduct

Source: mBio

A review of the United States Office of Research Integrity annual reports identified 228 individuals who have committed misconduct, of which 94% involved fraud. Analysis of the data by career stage and gender revealed that misconduct occurred across the entire career spectrum from trainee to senior scientist and that two-thirds of the individuals found to have committed misconduct were male. This exceeds the overall proportion of males among life science trainees and faculty. These observations underscore the need for additional efforts to understand scientific misconduct and to ensure the responsible conduct of research.

IMPORTANCE As many of humanity’s greatest problems require scientific solutions, it is critical for the scientific enterprise to function optimally. Misconduct threatens the scientific enterprise by undermining trust in the validity of scientific findings. We have examined specific demographic characteristics of individuals found to have committed research misconduct in the life sciences. Our finding that misconduct occurs across all stages of career development suggests that attention to ethical aspects of the conduct of science should not be limited to those in training. The observation that males are overrepresented among those who commit misconduct implies a gender difference that needs to be better understood in any effort to promote research integrity.

Raw Sewage Harbors Diverse Viral Populations

October 7, 2011 Comments off

Raw Sewage Harbors Diverse Viral Populations
Source: mBio

At this time, about 3,000 different viruses are recognized, but metagenomic studies suggest that these viruses are a small fraction of the viruses that exist in nature. We have explored viral diversity by deep sequencing nucleic acids obtained from virion populations enriched from raw sewage. We identified 234 known viruses, including 17 that infect humans. Plant, insect, and algal viruses as well as bacteriophages were also present. These viruses represented 26 taxonomic families and included viruses with single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), positive-sense ssRNA [ssRNA(+)], and dsRNA genomes. Novel viruses that could be placed in specific taxa represented 51 different families, making untreated wastewater the most diverse viral metagenome (genetic material recovered directly from environmental samples) examined thus far. However, the vast majority of sequence reads bore little or no sequence relation to known viruses and thus could not be placed into specific taxa. These results show that the vast majority of the viruses on Earth have not yet been characterized. Untreated wastewater provides a rich matrix for identifying novel viruses and for studying virus diversity.

At this time, virology is focused on the study of a relatively small number of viral species. Specific viruses are studied either because they are easily propagated in the laboratory or because they are associated with disease. The lack of knowledge of the size and characteristics of the viral universe and the diversity of viral genomes is a roadblock to understanding important issues, such as the origin of emerging pathogens and the extent of gene exchange among viruses. Untreated wastewater is an ideal system for assessing viral diversity because virion populations from large numbers of individuals are deposited and because raw sewage itself provides a rich environment for the growth of diverse host species and thus their viruses. These studies suggest that the viral universe is far more vast and diverse than previously suspected.

See: Biologists Find ‘Surprising’ Number of Unknown Viruses in Sewage (Science Daily)

Categories: mBio, public health, science

Get every new post delivered to your Inbox.

Join 1,015 other followers